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To eliminate the need for sensor placement on rotating flexible beams such as turbine
blades, helicopter rotors and like applications, a new approach has been developed based
on the linear quadratic estimator (LQE) technique for estimating the vibration of any point
on the span of a rotating flexible beam mounted on a compliant hub (plant) in the presence
of process and measurements noise. A non-linear model of the plant is utilized in this study
to mimic the actual plant behavior. The corresponding plant dynamics of the LQE are in
the form of a reduced order linear model constructed from the eigenvalues and
eigenfuctions of a finite element dynamic model of the plant formulated in the state
space. A virtual hub deflection (that mimics the actual measurement of the vertical hub
deflection needed by the estimation process) is generated by the non-linear model of the
plant. The LQE reconstructs the states of the plant, including transverse deflection of the
beam at any point, from the measurements of the vertical deflection of the hub, assuming
that it is the most accessible state for measurement. Estimated beam tip deflection obtained
by the proposed technique is then compared to the tip deflection generated by the non-
linear model and the results show good agreement.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Rotating flexible beams similar to Figure 1, model turbine blades, helicopter rotors, robot
arms and like systems. Extensive studies on the vibration of rotating flexible beams has
been dedicated to the development of theoretical models that describe the characteristics
of such vibration in a pure mathematical fashion [1–7]. However, few studies have
discussed the method by which the vibration of rotating beams could be monitored and/or
controlled. Khulief [8] has proposed the control of a rotating beam mounted on a rigid
hub using a linear quadratic regulator, which required the placement of the sensor and
actuator on the rotating beam. Lee and Eillott [9], Yousefi-Koma and Vukovich [10],
Zimmerman and Cudney [11], and Mallory and Miller [12] all have also suggested placing
sensors at various locations along the span of the beam for monitoring and control
purposes. However, their research has focused on either non-rotating beams or large space
structures.

Real-life applications that require in line monitoring and/or control of a rotating beam
may face many problems regarding sensor(s) placement on the beam such as high speeds,
extreme temperatures, and high centrifugal forces.

Another issue regarding many of the research studies dealing with the monitoring and/
or control of vibration of flexible rotating beams is that, they are limited to deterministic
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Deflected rotating flexible beam mounted on a compliant hub.
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models of the system. In reality, however, components of structural and mechanical
systems often exhibit considerable stochastic variations in their properties. Thus, the
characteristics of a structure corresponding to these properties show some stochastic
variations [13]. This makes it necessary to take account of the uncertainties of system
parameters if highly reliable models and/or control schemes are to be utilized.

To eliminate the need for a sensor placement on rotating flexible beam such as turbine
blades, helicopter rotors and like applications, a new approach based on the linear
quadratic estimator (LQE) technique for estimating the vibration of any point on the span
of a rotating flexible beam mounted on a compliant hub and undergoing large planar
deformation (plant) and subject to process and measurements noise has been developed. A
non-linear model of the plant is utilized to mimic the actual plant behavior [13]. The
corresponding plant dynamics of the LQE are in the form of a reduced order linear model
constructed from the eigenvalues and eigenfuctions of a finite element dynamic model of
the plant and formulated in the state space [6, 14–17]. The LQE reconstructs the states of
the plant, including transverse deflection of the beam, from the virtual measurements of
the vertical deflection of the hub, which is assumed to be the most accessible state for
measurement.

2. FINITE ELEMENT MODEL

To implement the proposed scheme on a distributed parameter system such as the beam
in Figure 1, the structure is discretized into finite elements forming an n-dimensional
discrete spring–mass–damper system whose dynamics is described by the second order
matrix differential equation

M .xxðtÞ þ C ’xxðtÞ þ KxðtÞ ¼ uðtÞ; ð1Þ

where M, K and C are, respectively, the mass, stiffness, and damping coefficient square,
symmetric matrices with their dimensions equal to the number of degrees of freedom n

[18]. xðtÞ and uðtÞ are the displacement and force vectors respectively. For systems with
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classical damping, i.e., the systems with damping matrix C proportional to the mass M

and stiffness K matrices, M, K and C can be diagonalized using normalized orthonormal
eigenvectors as the columns of the transformation matrix [15], resulting in

.ZZiðtÞ þ 2zioi ’ZZiðtÞ þ o2
i ZiðtÞ ¼ QiuðtÞ; i ¼ 1; . . . ; n; ð2Þ

where Zi; oi; and zi represent the transformed co-ordinates, natural frequency, and
damping ratio of the structure’s ith mode of vibration. When the input is point force (as in
the case of actuators), Qi is the vector of the ith eigenfuction evaluated at the force input
location.

Using equations (1) and (2) the formulation presented by equations (3) and (4) given
below is the basis for state-space modelling of flexible structures, having point force(s) as
the input(s) and point displacement(s) as the measured output(s):

’zz ¼
0 I

�X2 �2fX

2
4

3
5zþ 0

Q

2
4

3
5u; ð3Þ

y ¼ W 0
� �

zþDu; ð4Þ

where

state vector: zðtÞ ¼
gðtÞ

’ggðtÞ

8<
:

9=
;;

number of modes: Nm;

number of inputs: Nu;

number of outputs: Ny;

modal displacement: gðtÞ ¼ fZ1ðtÞ; Z2ðtÞ; . . . ; ZNm
ðtÞgT;

modal velocity: ’ggðtÞ ¼ f’ZZ1ðtÞ; ’ZZ2ðtÞ; . . . ; ’ZZNm
ðtÞgT;

input: uðtÞ ¼ fu1ðtÞ; u2ðtÞ; . . . ; uNu
ðtÞgT;

spatial coordinates: ri;

output: yðtÞ ¼ fxðr1; tÞ; xðr2; tÞ; . . . ; xðrNy
; tÞgT;

natural frequency: X ¼ diagfo1;o2; . . . ;oNm
g;

modal damping: f ¼ diagfz1; z2; . . . ; zNm
g;

eignenfunction i at location j : cij ;

input matrix: Q ¼
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Figure 2. Finite element model of the plant.
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The A, B, C and D matrices shown in equations (5) and (6), below that describe the state-
space model of the flexible structure, are functions of the system (natural frequency,
damping ratio, and mode shapes (eigenfunctions), i.e., if we assume h ¼
½oi; zi; and ci
i¼1;...;n; then the resulting state-space model format is

’zz ¼ AðhÞzþ BðhÞu; ð5Þ

y ¼ CðhÞzþDðhÞu: ð6Þ

The information needed to construct the A, B, C, and D matrices of equations (5) and (6)
(i.e., mode shapes and natural frequencies) can be easily obtained by performing finite
element analysis on a solid model of the plant using one of the readily available FEA
commercial software packages. A portion of the finite element model used to generate the
state-space model of the plant is shown in Figure 2.

3. OPTIMAL STATE ESTIMATOR (OBSERVER) DESIGN

The first step in designing the proposed optimal estimation technique is the design of the
Kalman gains [19, 20]. The plant used for this purpose is the one represented by equations
(5) and (6).

A Kalman estimator is used to estimate, on the basis of noisy measurements, the values
of the state variables of a system subject to stochastic input–output disturbances. The
input disturbances are included in the state-space model by adding the noise input vector v

to the exogenous input vector u: Moreover, to include measurement noise, the vector w is
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added to the output of the system. Such noise signals are usually part of the actual mode of
the system.

The Kalman estimator takes on a particularly simple structure closely resembling the
original system [19, 20]. The state-space model of the Kalman estimator is expressed by the
following equation:

’#yy#yy ¼ A#yyþ L½*yy� C#yy
 þ Bu ð7Þ
and

L ¼ S0C
TR�1; ð8Þ

where #yy is the vector of the state estimates, *yy is the vector of measured states from the
actual system, L is the Kalman matrix of gains, and S0 is the steady state solution of the
following matrix Riccati differential equation [18–20]:

’SS ¼ ASþ SAT � SCTR�1CSþ BQBT: ð9Þ
Matrices R and Q are the symmetric, non-negative matrices that minimizes the following
performance index J:

J ¼
Z 1

0

ðxTBQBTxþ uTRuTÞ dt: ð10Þ

It is worth mentioning that knowledge of the absolute magnitude of R and Q is not
important, rather, only their relative magnitude is important [15, 20].

Now, with the linear time-invariant model of the system available, namely equations (5)
and (6), along with the Kalman matrix of gains L, optimal estimates of the plant states can
be obtained according to equation (7).

It is worth mentioning that the controllability and observability of the estimator are
found by obtaining the rank of their corresponding gramians. Full-rank gramians indicate
a controllable and observable system [15, 20, 21]. The proposed estimation scheme is
shown in Figure 3.
Figure 3. Schematic of the proposed LQE approach for estimating beam tip deflection.
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4. NON-LINEAR MODEL OF THE BEAM–HUB SYSTEM (PLANT)

A mathematical model for a flexible beam undergoing large planar flexural
deformations, continuously rotating under the effect of hub torque and mounted on a
compliant hub has been developed by Al-Bedoor et al. [13]. Lagrangian dynamics in
conjunction with the assumed modes method were utilized to derive, directly, the non-
linear equivalent temporal equations of motion. The following four coupled non-linear
ordinary differential equations represent the generated non-linear mathematical model:

ð1 þ mÞ .XX þ 1
2
½ð1 þ 2C þ b3q2Þsin y� 2b1q cos y
.yy

þ 1
2
½ð1 þ 2C þ b3q2Þcos yþ 2b1q sin y
’yy2

þ 2½b3q sin y� b1 cos y
 ’qq’yy� ðb3 cos yÞ ’qq2

� ½b1 sin yþ b3q cos y
 .qq þ bs21X ¼ FX ; ð11Þ

ð1 þ mÞ .YY þ 1
2
½ð1 þ 2C � b3q2Þcos y� 2b1q sin y
.yy

� 1
2
½ð1 þ 2C � b3q2Þsin yþ 2b1q cos y
’yy2

� 2½b3q cos yþ b1sin y
 ’qq’yy� ðb3sin yÞ ’qq2

þ ½b1cos y� b3q sin y
 .qq þ bs22Y ¼ FY ; ð12Þ

½b0 þ b12q2
i 
.yyþ 2b12q ’qq’yyþ 1

2
½ð1 þ 2C þ b3q2Þsin y� 2b1q cos y
 .XX

þ 1
2½ð1 þ 2C � b3q2Þcos y� 2b1q sin y
 .YY

þ 1
2
½b14 þ b7q2
 .qq þ b7q ’qq2 ¼ T

mBl2
; ð13Þ

ðb2þ b8q2Þ .qq þ 1
2
ðb14 þ b7q2Þ.yyþ b8q ’qq2

� ðb1sin yþ b3q cos yÞ .XX
þ ðb1cos y� b3q sin yÞ .YY

� ð2b13q3 þ b12qÞ’yy2 þ b2b9q þ 2b2b1q3 ¼ 0; ð14Þ
where X and Y are the hub horizontal and vertical deflections respectively. y is the rigid-
body rotation and q is the beam ith modal degree of freedom. The base flexibility is defined
as a ratio to the beam flexibility using the parameters s1 ¼ KX l3=EI and s2 ¼ KY l3=EI :
For more information on the non-linear model see references [13, 14].

5. NUMERICAL SIMULATION AND RESULTS

The proposed technique is used to estimate the tip deflection of a beam mounted on a
compliant hub and rotating at a constant angular speed of 2400 r.p.m. and subject to
external torque is considered. Dimensions and material properties of the beam hub system
used in the non-linear model are given in Table 1. This model, as mentioned before, is
assumed to be a representation of the actual model. Of course, this model is needed to
generate what is assumed to be the measurable states of the actual system, i.e., the vertical
hub deflection as shown in Figure 3.

States of the system are generated by numerically integrating equations (11)–(14) using
Matlab1.

The reduced order linear elastodynamic model of the beam–hub system, i.e. (plant),
needed for the construction of the LQE and the corresponding Kalman gains matrix L is



Table 1

Simulation data for the beam-hub system

Item Value

Beam length 3m
Beam’s mass/unit length 6�44 kg/m
Beam’s flexural rigidity 3614
Hub radius 0�2m
Hub mass 50 kg
Hub stiffness KX ¼ KY ¼ 1e6 N=m
Torque applied 40Nm at 5Hz square wave

1Nm at 20Hz sine wave

Table 2

Modal frequencies generated by FEA

Mode Modal Frequency (Hz)

First mode 6�1183
Second mode 17�191
Third mode 34�745
Fourth mode 61�704
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generated from the eigenvalues and eigenfunctions of the finite element model according to
equations (5) and (6). The finite element model generated the natural frequencies and
mode shapes from the dynamic solution of a solid model of the plant descretized by 162
8-node shell elements each having a thickness equal to the beam–hub depth. The linear
state-space model of the plant is then constructed from the first four modes of vibration
predicted by the FEA method. The natural frequencies of the first four modes are listed in
Table 2. Figure 4 shows the first mode of vibration of the beam–hub system as predicted
by finite element analysis.

Modal damping of 1% has been added to the system (assuming natural material
damping). Thus the damping matrix C is constructed based on the initial assumption that
C is proportional to the mass and stiffness matrices namely, M and K.

With the matrices A, B, and C now available from the finite element model, the Kalman
matrix of gains L is obtained by solving equations (8)–(10), and the LQE is implemented
to estimate the tip deflection of the beam for the first four modes of vibration.

Simulation of the proposed technique is carried out using two types of torque excitation.
The first type is a 5Hz square wave torque with an amplitude of 40Nm and added to it a
�10Nm random torque. The second type is a 20Hz sine wave torque with an amplitude
of 1Nm and added to it a �1Nm random torque. The purpose of adding a random
torque profile is to simulate process noise. Both excitations are shown in Figures 5 and 6
respectively.

A random signal was added to the virtual measurements of the vertical hub deflection
(output of the non-liner model) to simulate measurements noise. Estimates of the
transverse beam tip deflection are obtained by plotting the corresponding state estimate
generated by the LQE.



Figure 4. First mode deformation of the beam–hub system as predicted by FEA.

Figure 5. Five Hertz square wave torque profile with added random torque.
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Figure 6. Twenty Hertz sine wave torque profile with added random torque.

Figure 7. Estimated versus non-linear beam tip deflection (first mode, square wave excitation). }}}
Estimated, - - - - - - Actual.
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Figures 7–10 show the estimated beam tip deflection compared to the assumed tip
deflection (tip deflection predicted by the non-linear model) for the first four modes of
vibration when the plant is excited by the 5Hz square wave torque.



Figure 8. Estimated versus non-linear beam tip deflection (second mode, square wave excitation). }}}
Estimated, - - - - - - - Actual.

Figure 9. Estimated versus non-linear beam tip deflection (third mode, square wave excitation). }}}
Estimated, - - - - - - - Actual.
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Figure 10. Estimated versus non-linear beam tip deflection (fourth mode, square wave excitation). }}}
Estimated, - - - - - - - Actual.

Figure 11. Estimated versus non-linear beam tip deflection (first mode, sine wave excitation). }}}}
estimated, - - - - - - - Actual.
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Figure 12. Estimated versus non-linear beam tip deflection (second mode, sine wave excitation). }}}
estimated, - - - - - - - Actual.

Figure 13. Estimated versus non-linear beam tip deflection (third mode, sine wave excitation). }}}}
estimated, - - - - - - - Actual.
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Figures 11–14 show the similar comparison between estimated tip deflection and the one
generated by non-linear when the plant is excited by the 20Hz sine wave torque profile.

Figure 14. Estimated versus non-linear beam tip deflection (fourth mode, sine wave excitation). }}}
estimated, - - - - - - -Actual.
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6. CONCLUSIONS

A new approach for estimating beam tip deflection via measurements of hub deflection
using a linear quadratic estimator for a rotating beam mounted on a compliant hub is
presented. A readily available non-linear model is used to mimic the actual vibration of the
beam–hub system. Approximate reduced order linear model of the beam–hub system is
obtained using finite element analysis.

A linear quadratic estimator is formulated based on the reduced order linear model
dynamics and the optimal Kalman matrix of gains is determined from the steady state
solution of a matrix Riccati differential equation.

With a fully functional estimator available, measurements of the vertical hub deflection
is compared to the estimated hub deflection and the difference (error) is multiplied by the
corresponding Kalman gain and fed back to the estimator as a second input. The output
of the estimator is a vector of two states, namely, hub deflection and beam tip deflection.

Estimated beam tip deflection is plotted and compared to the tip deflection produced by
the non-linear model; see Figures 7–14. Simulation results show that the proposed
approach is capable of producing fairly accurate estimates of the tip deflection for most
modes. However, over estimates of the tip deflection for some modes have persisted
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especially for the second mode (Figures 8 and 12). The authors have not yet been able to
justify such discrepancy.
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APPENDIX A: COEFFICIENTS OF THE NON-LINEAR INEXTENSIBLE BEAM MODEL
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Z 1
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Z 1
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Z x

0

f
02dg

� �� �
dx;
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Z x
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Z x
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f
04dg
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Z x
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dx;

b7 ¼
Z 1

0

f
Z x

0

f
02dg

� �
dx; b8 ¼

Z 1

0

Z x

0

f
02dg

� �2

dx; b9 ¼
Z 1

0

f2dx;

b10 ¼
Z 1

0

ðf0f00Þ2dx; b11 ¼
Z 1

0

xf dx;

b12 ¼ b2 � cb3 � b4; b13 ¼ 1
4ðb8 � b6 � cb5Þ; b14 ¼ 2cb1 ¼ 2b11;

where the prime indicates a derivative with respect to the dimensionless parameter, x:
The parameters x and g are related to the inextensibility condition that dictates the total

axial shortening uðs; tÞ according to the following equation [25]:

luðx; tÞ ¼ x�
Z x

0

cos cðg; tÞdg;
Figure 15. Deformed beam configuration.
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where the dimensionless parameter x ¼ s=l; s is the distance between a point on the beam
and the root of the beam, l is the length of the beam (see Figure A1), l ¼ 1=l; and fi is the
mode shape of the cantilever beam which is expressed in the form:

fiðxÞ ¼
1

ri

� �
½cosh pix� cos pix� aiðsinh pix� sin pixÞ
;

where ri ¼ fiðxÞj jmax is a scaling factor, pi ¼ mbonil
3=EI (oni is the ith modal frequency of

the non-rotating linear cantilever beam) is the ith dimensionless frequency parameter
found from the solution of the transcendental frequency equation

cos pi cosh pi þ 1 ¼ 0

and ai is a weighting constant associated with each mode, defined as

ai ¼
ðsinh pi � sin piÞ
ðcosh pi þ cos piÞ

:
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